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Abstract

A new large signal model for HEMTs, capable of

modeling the current-voltage characteristic, and its

derivatives, including the characteristic transcon-

ductance peak, gate-source- and gate-drain- capaci-

tances is described. Model parameter extraction is
straightforward and is made for a submicron gate-

length a-doped pseudomorphic HEMT. Measured

and modeled DC- and S-parameters are compared.

Introduction

Different empirical models suitable for simulation

of GaAs MESFETS in nonlinear circuits have been

developed [1-51. Some of the models have been in-

corporated in commercial Harmonic Balance (HB)

simulators. These models are used to predict gain,

intermodulation distortion, generation of harmon-

ics, etc, versus bias for circuits like amplifiers, mix-
ers, and multipliers. Recently, Maas et al [51 pointed

out that not only the current-voltage characteristic

Id[Vgs,Vds] but also the derivatives have to be mod-

eled correctly, especially if the model is supposed to

predict intermodulation distortion. In [5], the Id[Vgs]

dependence is modeled as a harmonic series, and

the coefficients are fitted to both the measured

Id[Vgs,Vds] and its derivatives by using singular-
value decomposition.

Since the above models are intended mainly to de-

scribe the performance of MESFETS, there are in-

creasing demands for HEMT models, which can
model the characteristic peak in the transconduc-

tance found in most HEMTs. In principle, the

model utilized in [5] could be used, but many terms

are normally needed and parameter extraction

must be done by special techniques.

We propose a simple model, where parameter ex-

traction can be made by simple inspection of the ex-

perimental Id[VgS,V&] and g~[VgS] characteristics,

yet it models Id and its derivatives with good accu-

racy. The model has been applied to both ordinary

AIGaAs-GaAs and pseudomorphic AIGaAs-

InGaAs-GaAs HEMTs with good results.

The model

The drain current function is expressed in accor-

dance with previous models as

Id[V~WV&]=&[V~,] bB[vd,] (1)

where the first term is dependent only on the gate

voltage and the second only on the drain voltage.

The JiB [Vds] term is the same as the one used in

other models [1,3]. For IdAIVgs], however, we pro-

pose to use a function whose first derivative has

the same ‘bell shaped’ structure as the measured

transconductance function gm[Vgsl. The tanh func-
tion was chosen since this function describes the

gate voltage dependencies and its derivatives well

and is normally available in commercial HB-simu-
Iators i.e.

~=IPk(l+tanh(~)~l +kV&nh(ctVd) (2)

where Ipk is the drain current, with the contribu-

tion from the output conductance subtracted, at

which we have maximum transconductance and

Vpk is the corresponding gate voltage. k is the

channel length modulation parameter and a is the

saturation voltage parameter. Parameters a and 1
are the same as those used in the Statz and Curtice

model. yt is in general a power series function cen-

tred at Vpk with Vgs as a variable i.e.

~=Pl(Vg,-Vpk)+P2(Vg,-Vpk)2+P3(Vgs-Vpk)3+... (3)

The selected Id[Vgs,Vds] function has well defined

derivatives. An advantage of the selected model is

its simplicity. The different parameters can as a first
aum-oximation be easilv obtained bv insrsection of

tk; measured Id[VgS.VdS]at a sat~rate~ channel

condition as follows: all higher terms in Y are as
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sumed to be zero, 1 is determined from the slope of

the Id-Vd characteristic, IPk and VPk are determined
at the peak transconductance, gmPk. P1 is now ob-

tained as

Pl=g~Pk/(Ipk(l+~Vd)) = gmpkJIpk (4)

In some of the HEMTs there is a weak variation of

VPk on the drain voltage Vd. This can be taken into

the account as

vpk=vpk~ + ?Vd (5)

the same type of modeling functions were chosen o

model the dependencies on gate and drain voltage

of the capacitances C% and Cgd

c[vgs,vd.]<~tan~v~s)] @tanh(vdS)] (6)

as suggested by [6,7]. Due to the similarity of

Id[Vgs,Vds] and Cgs[Vgs,Vdsl the functions can be ex-
pressed as

Cg,=Cg~l+tanh(wl)] [l+tax-h(w)l (7)

Cgd<gd~l+taXIh(v3)] [1-tanh(v4)] (8)

where

%=p0gsg+plgsgvgs+P2gsgv&+P3g&,+.... (9)

~2=Pog.d+P1g~vds+P2ggdv~ s+P3gsdv:s+.. . . (10)

‘3=pogdg+plgdgvgs+P2gdgv;s+l’3gdgv;s+.... (11)

Y4=Pogdd+(Plgdd+Plccvgs)vd,+P2gdd%+

P3gdd@~+...,

(12)

The term PlccVgsVdS reflects the cross-coupling of

Vg, and Vgd on the Cgd.When an accuracy of the

order of 5-loyo of the Cg~ and Cgd is sufficient

equations (3)-(8) can be simplified to

Cgs=CgJl +tanh(plg,gVgS)] [l+tanh(PlgSdVd,)] (13)

cgd+d~l +tanh(plgdgv$s)]

[l-tan~p,gddvds+rlccvgsvds)]
(14)

Equation 14 can be further simplified if cross-cou-

pling at large drain voltages (Vds>l V) is neglected:

cgd+d~l +ta@3gdgvgs)]

[l-tanh(rlgddvds)]
(15)

This is valid for the d-doped HEMTs with an Un.

doped AlGaAs spacer-layer used in this study since
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Fig. 1: The equivalent circuit of the transistor.

they have a saturated Cgs[Vg] characteristic for in-

creasing Vg due to absence of parasitic MESFET

channel formation in the AlGaAs layer, found in

HEMTs with a doped AlGaAs layer.

Experimental verification

The model parameters were extracted for different

pulse-doped pseudomorphic HEMTs with gate

length from 0.12 Lm to 0.35 ym and gate width

from 50 ~m to 200 ym, fabricated in our laboratory.

DC-parameters were measured by using a HP 4145B

parameter analyzer and S-parameters were mea-

sured by Cascade probes WPH-405 connected to a

Wiltron 360 Vector Network Analyzer in the fre-

quency range 0.5-62.5 GHz. All of the measured

HEMTs have very low Slz-parameter at normal bias

conditions. Here we present results of measure-

ments of the HEMTS with the gate width of 0.35 pm

and gate length 200 ~m for which accuracy of mea-

surements of the S-parameters is higher. S-parame-

ters were measured at the following bias points for

parameter extraction Vd=-1 V, -0.5 V, O V, 0.75 V, 2

V, 3 V and. Vg=-l.5 V- +0.5 V with a steP of 0.25 V.
Negative drain voltages are important for drain

mixers. The parasitic parameters of the transistor

(fig. 1) can be found most accurately at Vd=O. This
regime is akio important for mixers working in the

resistive mode [8]. At Vd~=O.75 V Ids is saturated and

at V&=2-3 V the transistor is in its normal operat-

ing mode.
The intrinsic parameters of the equivalent circuit
(Fig. 1) were derived. The parasitic parameters Lg,

L& Ls, ~, IQ Cp were freed and not changed during
optimization. At negative drain voltage the sign of
the conductance is reversed.
Our model was easily implemented in a commer-
cial Harmonic Balance-simulator (MDS from HP) as
a custom defined equation model. The model pa-

rameters are listed in Table 1.
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Fig. 2a: Measured (dots) and modeled (solid lines)

drain current, Id vs gate voltage,VW

=1 Vgs(v) 1

Fig. 2b: Measured (dots) and modeled (solid lines)

drain current, Id and transconductance, gm vs gate

voltage,VgS,

Rds

Fig. 2C Measured (dots) and modeled (solid lines)

Drain resistance, Rd~ vs gate vOltage, Vge.

In its simplest form v=I?I (Vg~-Vpk). It is, however,

recommended for this particular HEMT to include

the cubic term in order to improve the fitting of the

drain current and its derivates at voltages close to

pinch-off. All terms except PI and P3 are zero.

In Figure 2 a, b, c and d, the measured and modeled
Id-Vd characteristics, transconductance gm, output

resistance and the derivative of gm are shown re-

spectively.

Fig. 3 shows the measured and simulated magni-

tude of S21 of the transistor at different bias points.

Szl is shown in greater detail because of its sensitiv-

ityy to bias conditions. The difference between the

modeled and simulated values is very small.
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Fig. 3: The simulated (solid lines) and measured

(dots) magnitude of S21 of the HEMT.
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Fig. 2d: Measured (dots) and modeled (solid lines)

derivative of transconductance d(gm)/dVg

Figures 4 a, b and c show the measured and mod-
eled dependencies of Cg~ and Cgd for transistors

with gate widths of 200 pm x 0.35 ~. It can be seen,

that the most often used models (pn-junction or

Statz models ) are not workable in this ease. For thk

type of a pulse-doped pseudomorphic HEMT fol-
lowing simple expressions were found (with simple

curve fitting procedure [9] ) giving accuracy, which

is sufficient for most practical cases:

C&~l+tanh(Vg,-0.048V&)]

[l+tanh(O.4V~,)]
(16)

cgcl<$d~l +tanh(&48Vg,)]

[1-tan~0.5~Vds-0.M8V3,+0.2Vg,V~,)] ’17)

and for the simplified equation of Cgd we obtain

C8d=C@Jl+tanh(0.48Vg5)] [1-tanh(O.55Vd~)] (18)

where CgeO=C@~=145 fF are the capacitances for

V@=Vds=O.

In fig. 4b and c modeled dependencies of C@ using

equation (17) and (18) are shown. Evidently even

such a simple equation as (18) gives very good accu-
racy. When higher accuracy is required more terms

should be included in the model.
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Fig. 4a Measured (dots) and modeled (solid lines)

Cg, vs Vds according to eq. (16).
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Fig. 4b: Measured (dots) and modeled (solid lines)

C@ vs Vds according to eq. (17).
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Fig. 4C Measured (dots) and modeled (solid lines)

Cgd VS Vg~ according to eq. (18).

Conclusions

A practical and simple but yet accurate large-signal

empiric model capable of modeling the drain cur-

ren~-gate voltage ‘characteristic and its derivatives,

and the capacitances Cgs and Cgd for HEMTs is pre-

sented. Parameter extraction and the incorporation

of this model into a commercial software tool is

straightforward The model has been used to predict

the DC- and S-parameters of the devices and differ-

ent nonlinear circuits like mixers and multipliers

with very high accuracy.
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Table 1: Extracted parameters of the HEMT.
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